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A class of multivariate scattered data interpolation methods which includes the
so-called multiquadrics is considered. Pointwise error bounds are given in terms of
several parameters including a parameter d which, roughly speaking, measures the
spacing of the points at which interpolation occurs. In the multiquadric case these
estimates are O(1Y9) as d— 0, where 4 is a constant which satisfies 0 <A<1. An
essential ingredient in this development which may be of independent interest is a
bound on the size of a polynomial over a cube in R" in terms of its values on a
discrete subset which is scattered in a sufficiently uniform manner. © 1992 Academic

Press, Inc.

1. INTRODUCTION

Let 2 be a continuous function on R” which is conditionally positive
definite of order m. Given data (x;, f;), j=1, .., N, where X = {X(5 0 X}
is a subset of points in R" and the f;’s are real or complex numbers, the
so-called A spline interpolant of these data is the function s defined by

S =p0)+ Y ehlx—x),

j=1
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where p(x) is a polynomial in &, ; and the ¢/s are chosen so that

N

Y. ¢qlx)=0 (2)

J=1

for all polynomials ¢ in £, , and

p(x)+ Y ¢h(x;—x))=fi i=1,., N (3)

j=1

Here #,,_, denotes the class of those polynomials of R” of degree <m — 1.

It is well known that the system of equations (2) and (3) has a unique
solution when X is a determining set for &, , and 4 is strictly condi-
tionally positive definite. For more details see [7]. Thus, in this case, the
interpolant s(x) is well defined.

We remind the reader that X is said to be a determining set for #, , if
pisin £, _, and p vanishes on X implies that p is identically zero.

If 4 is the function defined by the formula

h(x)= —/1+|x]?, (4)

where |x| is the Euclidean norm of x, then m =1 and the corresponding
method of interpolation defined by (1), (2), (3}, and (4) is often referred to
as the multiquadric method. This and closely related methods are curreritly
quite fashionable, see [4, 10].

In an earlier paper [8] we obtained bounds on the pointwise difference
between a function fand the 4 spline which agrees with fon a subset X of
R" These estimates involve a parameter d that measures the spacing of the
points in X and are O(d') as d — 0 where / depends on 4. The results of the
present paper imply that for certain #’s, which include (4), the estimates
can be improved to O(4Y?) as d —» 0, where 1 is a constant which satisfies
0 < 4 < 1. The conditions on f are the same as those in [8].

1.1. A Bound for Multivariate Polynomials

A key ingredient in the development of our estimates is the following
lemma which gives a bound on the size of a polynomial on a cube in R"
in terms of its values on a discrete subset which is scattered in a sufficiently
uniform manner. This result may be of independent interest.

LEmMMa 1. For n=1,2, .., define v, by the formulas y, =2 and, if n> 1,
Ya=2n{1+y,_). Let Q be a cube in R" that is subdivided into q" identical
subcubes. Let Y be a set of q" points obtained by selecting a point from each
of those subcubes. If g =y ,(k+ 1), then for all p in .

sup | p(x)] < Y sup | p(y)l.

xeQ yevyY
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We remark that it is not essential for the set Y to intersect every subcube
of Q as hypothesized above. A variant of this lemma where Y intersects a
certain percentage of these subcubes can be found in Subsection 3.3.

Note that it follows from Lemma 1 that Y is a determining set of %,. The
estimate in the lemma is roughly equivalent to a bound on the Lebesque
constant for Lagrange interpolation. In the cases where Y is regularly
distributed in @ this bound can be derived by more traditional methods;
see [1,2].

1.2. A Variational Framework for Interpolation

The precise statement of our estimates concerning # splines requires a
certain amount of technical notation and terminology which is identical to
that used in [8]. For the convenience of the reader we recall several basic
notions.

The space of complex valued functions on R” that are compactly sup-
ported and infinitely differentiable is denoted by 2. The Fourier transform
of a function ¢ in 2 is

#(E)=[ e g(x) dx.
A continuous function 4 is conditionally positive definite of order m if

jh(x)¢* F(x) dx =0 (5)

holds whenever ¢ = p(D)y with  in @ and p(D) a linear homogeneous
constant coefficient differential operator of order m. Here ¢(x)=¢(—x)
and * denotes the convolution product

By % 9alt) = | $1(x) go(t —x) .
Note that (5) can be rewritten as
” h(x—y) ¢(x) ¢(y) dx dy > 0.

In what follows % will always denote a continuous conditionally positive
definite function of order m. The Fourier transform of such distributions
uniquely determines a positive Borel measure u on R”~ {0} and constants
a,, |7l =2m as follows: For all Yy € Z
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[rwm de=[ {o0-2@) T 090) 5} duce)

vl <2m

+ ) Dyl//(O (6)

iri<2m

where for every choice of complex numbers ¢, |al =m

> Z Ayt 5C,Cp=0. (7)

lal =m |Bl=m
Here y is a function in & such that 1 — #(¢) has a zero of order 2m +1 at
& =0; both of the integrals [, 5 < 117" du(&), s> du(&) are finite. The
choice of x affects the value of the coefficients a, for |y| <2m.

Our variational framework for interpolation is supplied by a space we
denote by 4, ,,,. If

2, = {qﬁe@: J x*¢(x) dx =0 for all |« <m}

then €, ,, is the class of those continuous functions f which satisfy

f [ 1) 900 ax

1/2
<) {] W= 3) 60 GO e iy ®)

for some constant ¢(f) and all ¢ in 9,. If f€%,,, let | f|, denote the
smallest constant ¢(f) for which (8) is true. Recall that ||/, is a semi-
norm and %, ,, is a semi-Hilbert space; in the case m =0 it is a norm and
a Hilbert space respectively. Elements fin ), are of the form

f=rf+/s
where the Fourier transform of £, is given by

Ji(&) = g(&) du(&)

with g in L?(du) and f, is a polynomial of degree m.

Given a function fin %, and a subset X of R" there is an element s of
minimal %, ,, norm which is equal to fon X. If X is a determining set for
2, then s is unique. We refer to such s as the 4 spline interpolant of f
on X. In the case when X is a finite subset of R” as considered in beginning
of this introduction the /4 spline s is given by (1), where f(x,)=/1,
i=1,.., N, See [7] for more details.
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1.3. Exponential Error Estimates

Our basic theorem concerns how well s approximates f in regions
where X provides sufficient coverage. In other words, we are interested in
bounds on the quantity

Lf(x) — s(x)]
——, 9)

(WAP
where x is in @; the estimates should be in terms of parameters which
measure how closely X covers 2. For example, the parameter d = d(£2, X)
defined by

d(Q,X)=sup inf |y— x|

ye2 xekX

is one such measure.

In [8] we showed that in many cases the quantity in (9) is O(d*) as
d — 0, where k is a constant whose maximum value is determined by 4. In
this paper we restrict our attention to #’s whose corresponding measures
defined by (6) satisfy certain moment condition. For example, if 4 is given
by (4) then, as detailed in Subsection 2.2, there is a positive constant p such
that for all integers k greater than 2

[ 121% duce) < pte. (10)

In this case we are able to obtain the exponential estimate described in the
abstract.

In subsection 2.3 we consider a variant of (10) where k! is replaced
by k%, r an arbitrary real constant. As might be expected, this leads to
somewhat different bounds on (9).

Because of the local nature of the result, we restrict our attention to the
case where Q2 is a cube.

THEOREM 1.  Suppose h is conditionally positive definite of order m and
the corresponding measure p satisfies (10) for all k greater than 2m. Then,
given a positive number by, there are positive constants 6, and A, 0< 1 <1,
which depend on by and h for which the following is true: If f €€, ,, and s is
the h spline that interpolates f on a subset X of R" then

|f(x) = s <22 £,

holds for all x in a cube E provided that (1} E has side b and bz b,
(1) 0 < 8 < dy. and (iii) every subcube of E of side o contains a point of X.



ERROR BOUNDS FOR INTERPOLATION METHODS 99

Observe that every cube of side é contains a ball of radius /2. Thus the
subcube condition is satisfied when 6 =2d(FE, X). More generally, we can
easily conclude the following:

CoOROLLARY 1. Suppose h satisfies the hypotheses of the theorem, Q is a
set which can be expressed as the union of rotations and translations of a
fixed cube of side by, and X is a subset of R". Then there are positive
constants dy and A, 0 < A < 1, which depend on b, and h for which the following
is true: If d <dy, f€%,,, and s is the h spline that interpolates f on X then

|f(x) = s(a)l <AV £,
holds for all x in 2 where d=d(Q, X).

Note that any ball in R” satisfies the hypothesis on & in the above
corollary. Indeed, any set £ with sufficiently smooth boundary satisfies this
hypothesis.

2. DETAILS FOR THEOREM 1, EXAMPLES, AND GENERALIZATIONS

As alluded to in the introduction, Lemma 1 is an important ingredient in

the proof of this theorem. The following lemma, which is a transparent

consequence of Lemma 1 and routine arguments involving linear func-
tionals, is in convenient form for applying this ingredient.

Lemma 2. Let Q, Y, and y, be as in Lemma 1. Then, given a point x in
Q, there is a measure o supported on Y such that

[ () do(y)=p(x)
for all p in &, and

[ dlol(y)gemtern,
2.1. Proof of Theorem 1

First, let p, y,, and b, be the constants appearing in Inequality (10),
Lemma 1, and Theorem 1, respectively. Let

2
B= 2‘0\/; o2in and C =max {B, gb—}
0
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Let

1

Sp=————,
T3¢y (m+1)

where m is the order of conditional positive definiteness of #. We will show
that &, as defined above can be used for the constant in the statement of
Theorem 1.

For now, let x be any point of the cube E and recall that Theorem 4.2
of [8] implies that

lf(X)—S(X)I<ckallhfIy—XI"dIGI(y) (11)

whenever k> m, where ¢ is any measure supported on X such that

[ 3y do()= p(x) (12)

for all polynomials p in %, _,. Here

ié|2k 172
ev={[ oy ]

whenever k> m and by virtue of (9)
e <(2p)~. (13)

To obtain the desired bound on |f(x)—s(x})| it suffices to find a suitable
bound for

1=ckf |y —x|*dl|o|(y).

This is done by choosing the measure ¢ appropriately. We proceed as
follows:

Let 6 be a parameter as in the statement of the theorem. Since § <, we
may chose an integer k so that

1<3Cy,k6<2. (14)

Note that such a £ is 2m+1 and y,kd < b,. Let O be any cube which
contains x, has side y,kd, and is contained in E. Subdivide Q into (y,k)"
congruent subcubes of side &. Since each of these subcubes must contain
a point of X, select a point of X from cach such subcube and call the
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resulting discrete set Y. By virtue of Lemma I we may conclude that there
is a measure o supported on Y which satisfies (12) and enjoys the estimate

[ dlol ()< e, (15)

We use this measure in (11) to obtain an estimate on /.
Using (13), (15), and the fact that support of ¢ is contained in @ whose

diameter is \/; v,k6 we may write

I<(2p) (/1 7,K8)* e < (Cy, k). (16)
Since
2 1
C <z 2
VKo 3 and k 3Cr.0

Inequality (16) implies that
I< ((2/3)1/(30/',))1/5.
Hence we may conclude that

() = sCe) <A f 114

where
A= (2/3)1/(3@")'

2.2. Examples

A well known class of examples of conditionally positive definite /’s is
given by

__ 1I1a/2)
h(x)—_(l_+ lez)a/z’

where « is a fixed real number #0, —2, —4, .. and I is the classical
gamma function. The corresponding measure u is given by

Au(&) = c,1E1“ 2K, - ayallEl)s

where ¢, is a positive constant and K, is a modified Bessel function of the
second kind; see [8] for more details and the cases a=0, —2, —4, ...
Because of the exponential decay of K,(¢) as ¢ — oo the moments of u grow
like p*k! and hence y satisfies (9) whenever k is sufficiently large.
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The important example of the Gaussian
h(x)=e "
has corresponding measure
du(&) = (2m)"? e 147 g,

of course. The moments of u grow like pk\/ﬁ . Although Theorem 1
provides a bound on the error, in this case one expects better estimates’
because the growth of these moments is significantly slower than
hypothesized.

More generally, consider the case when the measure u is given by

du(&)=e " dg,

where a is a positive constant. Here, of course,

hx) = [ 8 e 1 g,
The moments of u grow like p“k™ where r = 1/a. The case a=2 is essen-
tially the Gaussian which together with the rest of the cases a=1 is
covered by Theorem 1. On the other hand if 0 <a <1 the bound on the
rate of growth of the moments hypothesized in the statement of Theorem 1
fails to hold.

The theorems in Subsection 2.3 provide answers to the questions raised
above.

2.3. Generalizations

As mentioned in the introduction, different bounds on the rate of growth
of the moments of the measure u result in different estimates on the
difference between f and its /4 spline interpolant s off the interpolated set.
Here we consider the case

[/ 161" du(e)<pt (17)

for k> 2m, where r is a real constant and p is a positive constant.
Note that in view of Stirling’s formula there are positive constants p, and
P, such that

PREF < K < pkk”. (18)

Thus the case ¥ =1 was treated in Theorem 1. Also observe that Theorem 1
provides an estimate in the case r > 1. However it is possible to get a more
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sensitive estimate in this case without much more work; this is shown in
Theorem 3 and its proof. We first consider the case » > 1.

THEOREM 2. Suppose h is conditionally positive definite of order m and
the corresponding measure u satisfies (17) with r 2 1 for all k greater than
2m. Then, given a positive number by, there are positive constants 8, and 4,
0 <A< 1, which depend on h, r, and b, and for which the following is true:
Iffe%,,, and s is the h spline that interpolates f on a subset X of R” then

S = sl <227 f 1

holds for all x in a cube E provided that (i} E has side b and bz b,,
(ii) 0 < 0 < 8y, and (iii) every subcube of E of side & contains a point of X.

Proof. In view of (17) and (18) there is a constant p, such that
1
o Ve du(@) < phier %

Let y, and b, be the constants appearing in the statements of Lemma 1 and
Theorem 2 respectively. Let

B= 2p0ﬁ o2 and C =max {B, —3-%—} .
(4]

and let
1
R —
T3 Cy (m+ 1)

where m is the order of conditional positive definiteness of A Let 6 be a
parameter as in the statement of the theorem. Since § <&y, 3(Cy,8)" is
less than 1 and we may choose an integer k such that

1<3(Cy, 8) "k < 2.

Note that such a kis 2m+1 and y,ké < b,,.
Proceeding as in the proof of Theorem 1 we get

) = s < T s (19)

where

T< pbk=D4(/ny,k8)* ek < ((Cy,8) k)™

640/70/1-8
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Since

2 1
Cy,0) k<= d k22—
( yn ) 3 an 3(C,yn5)1/r

we may conclude that
I< ((2/3)1/(3(Cvn)1/’))5“/’_
In view of (19) the theorem now follows with

A= (2/3)1/(3(@”)1/’). I

THEOREM 3. Suppose h is conditionally positive definite of order m and
the corresponding measure p satisfies (17) with r <1 for all k greater than
2m. Then, given a positive number b, there are positive constants 5,, ¢, and
C, which depend on h, r, and by and for which the following is true: If f €€,
and s is the h spline that interpolates f on a subset X of R” then

| /() = ()l < (CO)* | £,

holds for all x in a cube E provided that (i} E has side b and b > b,,
(i1) 0 < 8 < 8y, and (iii) every subcube of E of side 6 contains a point of X.

Proof. Let

d,=min ! b

=mi

° (BbG) ="y, 2y, (m+1)§°
where v, is the constant defined in Lemma 1, and

B=2po/n e

with p, as in the proof of Theorem 2. Then if § <J, there is an integer k
such that

%Sy,,ékao.

Arguing as in the proof of Theorem 2 we can conclude that

|f(e) = s <IN f s (20)

where 7< (By, k") . Since k< b,/(y,0) we may write

bO rn k
I<| By,s
Y0
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and since Byl 'phé' "< 1 and k= b,/(2y,9) it follows that
Ié (BV,lf rb651 — r)bo/(Z‘yné).
The last inequality together with (20) implies the desired result with

(1-7) by
c=—"

C =(Bby)/0—"y, and %, i
3. DETAILS FOR LEMMA 1
We begin by asserting that it suffices to prove
sup | p(x)] <e* sup | p(»)I- (21)

xeQ yeY

If g=y,(k+1) this inequality is identical to that in Lemma 1. To see why
(21) is sufficient, define ¢’ by ¢’ =7y,(k+ 1) and let Q' = Q be a cube that
contains exactly (¢')" of the ¢” subcubes of Q. By (21) we have

sup | p| <e*™ sup |pl. (22)
23 [2a0 ¢

The inequality in Lemma 1 now follows because supgy ., y|p| <supy |p|
and every point in Q lies in at least one such Q'. Our proof will actually
establish

2 kN n
sup 1p)1 < (225 ) sup 1 (), 23)
xeQ . yveYt

This gives (21) because (2¢)%/k! <e.

To simplify notation we assume Q = [0, 17" To see that this involves no
loss of generality, let Q be any cube in R” and let ¢ be an affine transforma-
tion mapping [0, 11" onto Q. Then polynomials p on Q are related to poly-
nomials f on [0, 1]” via the correspondence

S(x)=p(4(x))

and the corresponding subdivisions and discrete subsets Y are related
analogously. It is clear that an estimate like that given by Lemma 1 on the
size of fon [0, 17" implies the corresponding estimate on the size of p on
0.
Our proof of Lemma 1 involves induction on the dimension n. While
Lemma 1 and its proof are elementary and well known in the case n=1,
in the first subsection we formulate it in a manner convenient for the



106 MADYCH AND NELSON

necessary induction argument. The general case involves certain unpleasant
combinatoric and geometric complications, so for the sake of clarity, we
spell out the argument in the case n=2 in the second subsection. The
general case is considered in the third subsection.

3.1. The Case n=1

PROPOSITION 1. Let T={t,, ..., t,} be a subset of the unit interval [0,1]
and assume t,_, +1/g<t,, for i=1, .., k. Then for all pe %,

2
sup 101 <2 sup (o).
te[0,17 teT

Proof. Recall p=3%_, p(t,) L;, where

t—l‘

k
L= TI

Jj= 0]#11

The assumption 1/g <t;—t,_, implies [t,—t,| =" < g/|i— j|. Also, [t—1;] <1
for all &[0, 1]. Hence, for such ¢, |L,(¢)| <g¢*/[i!(k—i)!] and

u 1 @9
E IL(0) <q* Z Tho &

which gives the desired inequality. |

3.2. The Case n=2

PROPOSITION 2. Suppose the square Q = [0, 1]? is divided into q* identi-
cal subsquares and X is a set that intersects each subsquare. If q = 12(k + 1),
then for all pe %,

2 kN 2
sup (00 < (GEE) sup ) (24)
xeQ . xeX
Proof. Instead of (24) we show that if he & and |h(x)| <1 for all xe X
then
kN 2
sup 1 < (G2 25)
0 k!

That this implies (24) can be seen by considering # = p/(e+supy |p]),
e>0.

Let Q,, ie I denote the ¢° subsquares of Q and set m,=min,, ||, where
00, denotes the boundary of Q,. Let N, be the number of points in
Iy={iel:m,<1}. We assert that

No>q>— (2k—1)% (26)
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To see this, take b= (b, b,), let g,(x) = |A(x)|* + (b, x, + b, x,), and note
that for every ie I\I,,

min g, <1< (m,)?> =min g,.
0 go \( z) 30 8o

Thus we can choose ¢ >0 such that if || <e¢ then for every ie I\ ],

min g, <min g,.
Oi g

When this occurs, g, has a critical point in the interior of Q,. Such a b can
be chosen such that all the critical points of g, are nondegenerate; for
example see Lemma 6.2 on p.40 of [9]. Now g, %, so by virtue of
Proposition 4 in Subsection 3.4 it can have at most (2k—1)* non-
degenerate critical points. Thus I\ I, has at most (2k — 1) points and (26)
follows.

For each ie 1, select a point y,e dQ, such that |A(y,)] <1 and that y, is
not one of the four corners of Q,. Partition [, into four subsets 7,, .., I,
according to whether y; lies on the top, bottom, left, or right edge of Q..
Let N, be the number of points in /, and assume without loss of generality
that N, = N, /4.

For each j=1, .., ¢ let I(j) be the set of i’s for which @, lies in the
horizontal strip

{(t,s):0<t<1, (j—1)<gs<j}

Let N{j) be the number of points in 7, n I(j) and let N be the number of
points in J={j: N(j)=2(k+1)}. '

Noting N, =27, N(J)SNg+(g—N)(2k+1)=q(2k+1)+(g—2k—1)N,
we observe that N <k would imply

N, <q3k+1)—k(2k + 1).

Since this gives Ny <4N, < q(12k + 4) — (8k? + 4k) which violates (26), we
conclude that Nz k + L.
Let pi{t)=h(t, j/q). In N(j) of the intervals
r—1
q

<t<-, r=1,...,49

B

there is a point ¢ with |p;(f)] < 1. If je J there are at least 2(k+ 1) such
intervals. Thus we can apply Proposition 1 to p; and see that

(29)*
| <
max IlpAn)l < T

(27)
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for every jeJ. Using this and the fact that J has N>k + 1 points we can
apply Proposition 1 again, this time to p(s) = k(a, s), a€ [0, 1] to arrive at
25). 1

3.3. The General Case

PROPOSITION 3. Define y, for n=1,2,.. by y; =2, v,=2n(1+y,_,),
n>1. Let r€(0, 1] and let k and q be positive integers with q = y,(k+ 1)/r.
Subdivide the unit n-cube [0, 11" into q" identical subcubes and let N be the
number of such subcubes that intersect a subset X of R". If N>=rq" then for
all fe 2,

2 k\n
sup |f(x)|<(( Q)) sup | /(). (28)

xe[0,1]" k ’ xe X
Proof. We first deal with the case n=1. In that case the subcubes are
the intervals I,=[(i—1)/q, i/q], i=1, .., q. Let (1) <i(2) < --- <i(N) give
the intervals that intersect X. For each j=1, .., N choose x(j)e [;;,n X. By
assumption, N >rq > 2(k + 1). The points

to=x(1), t; =x(3), ..., t, = x(1 + 2k)

satisfy ¢,—¢;, ;> 1/q so (28) follows from Proposition 1.

To complete the proof we use induction on n. The integers k& and g will
be held fixed during the induction. Let n’=rn—1 and define r' by
V,/r =7,/r. Then g =7, (k+ 1)/r'. Subdivide the unit »’-cube [0, 1]" into
g" identical subcubes and let N’ be the number of such subcubes that inter-
sect X' = R™. If N’ > r'q" then, by induction, for all g€ %,

2 kN n'
<(kq!)> sgpfgl- (29)

sup |gl <
[0,13¥

Instead of (28) we will show that if #e &, and |A(x)| < 1 for all x € X then

2 k\ n
[sougn | Al <<(131) ) . (30)

That this implies (28) can be seen by considering /= p/(¢ + supy| p|), ¢ > 0.
Let 2 denote the family of ¢* subcubes of [0, 1]”. For each Qe 2 let
mg=min,, || where dQ denotes the boundary of Q. Let

L={Qemy<1}.  2,={Qe2:0nX#T}.

Note that N is the number of elements in 2 and let N, be the number of
elements in 2,. We assert that

N,=N—(2k)" (31)
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To see this, for be R” consider the functions g, defined by
gplx) = A + (byxy + - +b,x,).
If 2€ 2,\2, then

min g, <1< min g,.
0 [29)

Thus we can choose ¢ >0 so that for all Qe 2,\2, and all |b| <¢

min g, <min g,.
Q 30

When this holds, it is evident that g, has a critical point in the interior of
Q. Thus g, has at least N — N, critical points. Such a b can be chosen such
that the critical points of g, are nondegenerate, see Lemma 6.2 on page 40
of [9]. Since g,e P, by virtue of Proposition 4 in Subsection 3.4 it can
have at most (2k—1)" nondegenerate critical points. Thus N— N, <
(2k — 1)" which gives (31).

For each Qe .2, a point y(Q) e 0Q can be selected so that |A( y(Q)) < 1.
By moving y(Q) slightly, if necessary, it may also be assumed that y(Q) les
on exactly one of the hyperplanes

M, ={yeR"y,=jlq}, m=1,.,nj=0,.,4q

Let N,(m,j) be the number of Qs for which y(Q)eM, ;. Let
Num=24_0Num, ), and note that N,=37 _, N,,. Without loss of
generality we assume N, , = N,/n.

Let Y={»(0):0€%,}, Y,=YnM, ;. In each hyperplane M, , there
are ¢" ' (n— 1)-cubes that correspond to the subdivision of [0, 11" into ¢"
n-cubes. Let N(Y;) be the number of (n —1)-cubes in M, ; that intersect Y.
Then N(Y,) > N,(n, j)/2 because for each (n— 1)-cube Q" in M, , there are
at most two n-cubes Q € 2 which contain @’'. Thus we have

2 ( " N( Y,)) =N,,=N,/n (32)
=0

J

If N(Y;)=r'q"~" then from (29) we get

k\n—1 kxn—1
Ih(x, j/q)1<<(2” ) sup |h1<(9‘ﬂ> (33)

k! ki

for all x' € [0, 11"~ " Let J={j: N(Y,)=+'q" ' }. We will show below that
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J has at least k+1 elements. This allows us to apply Proposition 1 to
p(t) =h(x', t). The result is

;< Ca)
e, 0] <

max [h(x', j/q)|
jedJ

for every e [0, 1]. Because of (33), this gives (30).
Let s be the number of elements in J. It remains to show s>k + 1. For
all j, N(Y,)<q" " and for j¢J, N(Y;)<r'q"~". Thus

q
Y NY)<sq" '+ (1+qg—s)rg" "

j=

Combining this with (32), (31), and the hypothesis N = rq” gives

—(rq —(2k))<2 NY)<sg" '+ (L+g—s)r'g"™"

Jj=

or, after division by ¢" !,

rg (2k)q

-1 "<s(1—r'). 34
3 e~ (LH O <s(=r) (34)

By definition of ', r=ry,/y,_. with y,=2n(1+7v,_,). Hence
r2n=r(1+9,_()/yn_10r#/2n—v" =¢"/y,_,. Thus (34) can be rewritten as

r'q _<(2k)"q
Va1 \ g2n

+ r’) <s(1—r").

By assumption we have ¢ = y,(k+ 1)/r=vy,_,(k+1)/r. Taking
M=y, ,/r in the following lemma, we find (1 —-r'}k+1)<s(1—7r")
which gives s=k+1. |

LemMa 3. Ifnz=22, k=1,re(0,1], Mr' =22, and gz M(k + 1) then

q (2k)q

(1—r’)(k+1)<ﬁ— 7 -7 (35)

Proof. From k<k+1<¢g/M we have k/g<1/M <1/2 and

M+1) (2 MELD) _k+1 2%k
(q) o (M) T S M SmST
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Multiplying this by —1 and then adding 1 +k gives

1 2k\" 1

1+k—kr’<<]\—4—<;) -2;) Mk +1).

Hence

1 2kN\" 1
— ’< —_— == —
L4 k—kr (M (q) Zn)q

which is the same as (35). |

3.4. Critical points of polynomials

ProrosITION 4. If p is a real valued polynomial on R" of degree d then
p can have at most (d— 1)" nondegenerate critical points.

Proof. A simple argument for the case n=2 goes as follows: Let ¢ be
the greatest common factor of dp/ox, and dp/0x,, and write dp/0x;=qp;,
i=1,2. If g vanishes at x, then

2

oq op
R e

?

&%p
0x, 0x;

(xo)) =0,

Hence x; is a degenerate critical point. At any nondegenerate critical point
x, we therefore have p,(x,) =0= p,{x,). Since p; and p, have no common
factor, the two-variable version of Bezout’s theorem, for example see [127,
implies that the number of such points x, does not exceed
N=(deg p,)(deg p,)<(d—1)>. The lack of such a convenient form of
Bezout’s theorem when #n > 2 is what makes the general case more difficult.

To obtain a proof in the general case we begin by observing that it is a
corollary of its complex analogue. Indeed, there is a unique Pe Z,(C") such
that p(x)= P(x+10) for all xe R". Here and in what follows 1=./—1.
From

op oP
it 7 0
ot (x) o (x+10)

and the corresponding formula for second order partial derivatives, it is
clear that if x, is a nondegenerate critical point of p then zo=x,+10 is a
nondegenerate critical point of P. Thus the general case follows from the
next proposition. [

PropoSITION 5. If pe Z,(C") then p can have at most (d—1)" non-
degenerate critical points.
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Proof. For j=1,.,n let p,=0p/0z;. All critical points of p are
degenerate if p;=0, so we assume p,;#0 for all j. Let m=dim P,(C"); we
identify points ce C™

c=(C:z)|oc|<d=(arx+lbac)|a|<d=a+lb (36)

with points (a, b) e R*"™. For z,e€ C, ze C" and ce C™ let

fzg,z,¢)= ), c,z%z5 1
lel <d
Let ¢, be the point in C™ such that p(z)= f(1, z, ¢,) for all ze C". Note
that p,(z) = f;(1, z, ¢,) where f,=0f/0z;, j=1, .., n.

Let z(1),..,z(N) be nondegenerate critical points of p. Put
EN = (1, z(r)), r=1, .., N and observe that z= A", Ae C is a solution of
the system f;(z,¢,)=0, j=1,.,n By Bezout's Theorem [11], if n
homogeneous equations f;(z) =0 in n+ 1 variables z=(z,, z) have only a
finite number of solution rays z=AEY, r=1,.., 4, £PeC"*1\{0}, then
g<(d—1)", where d—1 is the degree of f;, j=1, .., n. The desired conclu-
sion, N<(d—1)", would follow if we knew that the system f;(z, c,) =0,
j=1, .., n had only a finite number of solution rays. The latter may not be
true, but it suffices to show that we can perturb ¢, to obtain a point ce C™
for which the number, ¢, of solution rays of the system f(z ¢)=0,
j=1, .., nis finite and satisfies g.> N.

First we show that ¢.> N is automatic if ¢ is close enough to c,.
Consider the map T from C"x C” to C" given by

T(z, c)=(f1(1, z, ¢), ..., (1, 2, C)).

The points z(i) are nondegenerate, so the » x n matrix ¢7/0z is nonsingular
at (z(i),c,), i=1,.., N. By the Implicit Function Theorem there are
analytic functions {; on a neighborhood B <= C™ of ¢, such that

T (), e)=0,  (i(c,)=2(), i=1,.,N

By making B smaller, if necessary, it may be assumed that {,(c) # {;(c) for
all ce B and all i+ . It is then evident that ¢.> N for all ce B.

To complete the proof we establish that for almost every point
(a, b)e R*", the system f;(z, a+1b)=0, j=1, .., n has only a finite number
of solution rays. For k=0,..,n define maps J* from R* to
{zeC"* 1z, =1} by

k
1 ey X0} = (01 F 155 oy X F 1% 445 Ly Xp 1 F 1Ky o 15 oo Xy + 1X2,,)

Let V(k, a,b)= -, {xe R* f;(J*(x), a+1b)=0}. The maps J* provide
coordinate systems for complex projective n space. By compactness of that
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space, it suffices to prove that V(k, a, b) consists of isolated points for every
k=0, .., nand almost all (g, b)e R*.
The proof of this uses a theorem from [9]. To prepare, define f; (2},
lo| <d by
0z*  0of,

fialzo, 2)=1(z0)* ™ i 6cj (29, 2, ¢}

J @

and identify f; , with an n x m matrix.
We assert that fj!u(J"(x)) has rank n for every k=0, ..,n and every
x€ R*. For k#0 we take

a=oali, k)y=e(i)+ (d— 1) e(k), i=1,..,n,

where {e(1), .., e(n)} is the standard basis for R”, and consider the nxn
matrix F,;(x, k) = f; yu0)(J5(x)). Then Fy ((x, k)=d, F, ,(x, k) =1 for j#k,
and F; (x, k)=0for j#i, i # k. It follows that det(F, ,(x, k))=d, k #0, the
off diagonal entries of the kth column of F are not needed for this. For
k=0, the nxn matrix F;;(x,0)=f, ,»(J%x)) is seen to be 0,; and our
assertion is verified.

To obtain notation more like [9] we fix k€ {0, .., n} and define real
valued function U, ..., U,, by

U,(x, a,b)+1U; , (x, a, b) = f,(J*(x), a + 1b).

Using the analysis of F;,;(x, k) above, we see that the 2n x 2(n + m) matrix
of partial derivatives of Uy, ..., U,, has rank 2n. By Theorem 7.1 on p. 50 of
[9] we conclude that for almost all (a, b)e R*, the 2nx2n matrix
(0U,/0x;)(x, a, b) is nonsingular at every point in

2n
Vik,a,b)= () {xe R U,(x, a, b)=0}.

i=1

Thus for such (g, b) the points in V(k, a, b) are isolated. §

4. MISCELLANEOUS REMARKS

A detailed account of conditionally positive definite function and dis-
tributions can be found in [6]. For a development of the variational theory
which does not involve Fourier transforms see [77; this paper also
contains error estimates which are different from those considered here.

The analogues of Corollary 1 for Theorem 2 and 3 are clear. It is also
clear that the analogues of Lemma 1 and the Theorems hold when the
cubes are replaced by more general parallelepipeds; simply apply an
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appropriate affine transformation. Thus analogues of Corollary 1 hold
when € satisfies an interior cone condition. Since our results seem to apply
to most reasonable situations we refrain from exploring further generaliza-
tions.

If the measure u satisfies (17) with »< 0 then it must have compact
support. Also recall that in this case the constant C can be taken to be
independent of b,. Since the exponent ¢ is (1 —r) by/(2y,), if J is such that
Co < 1, letting b, — oo it is clear that | f(x)— s(x)| — 0. In other words, for
sufficiently small ¢ if the intersection of X with any cube of side 4 is not
empty then s(x)= f(x) on R" This means, of course, that the values of f
on X uniquely determine /. The implications of this to irregular sampling
theory, such as that found in [3] or [5] for example, will be explored
elsewhere.
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