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A class of multivariate scattered data interpolation methods which includes the
so-called multiquadrics is considered. Pointwise error bounds are given in terms of
several parameters including a parameter d which, roughly speaking, measures the
spacing of the points at which interpolation occurs. In the multiquadric case these
estimates are O(A lid) as d -> 0, where A is a constant which satisfies 0 < A< 1. An
essential ingredient in this development which may be of independent interest is a
bound on the size of a polynomial over a cube in Rn in terms of its values on a
discrete subset which is scattered in a sufficiently uniform manner. © 1992 Academic

Press, Inc.

1. INTRODUCTION

Let h be a continuous function on R n which is conditionally positive
definite of order m. Given data (xj ' f), j = 1, ..., N, where X = {XI' ..., XN}
is a subset of points in R n and the fj's are real or complex numbers, the
so-called h spline interpolant of these data is the function s defined by

N

sex) = p(x) + L cjh(x - Xj),
j~l

(1)
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where p(x) is a polynomial in ;JIm-l and the c/s are chosen so that

N

L cjq(xj ) = 0
j~l

95

(2)

for all polynomials q in ;JIm _ 1 and
N

p(xi)+ I cjh(xi - Xj) = fi,
j~l

i= 1, ..., N. (3)

Here ;JIm _ 1 denotes the class of those polynomials of Rn of degree :(; m - 1.
It is well known that the system of equations (2) and (3) has a unique

solution when X is a determining set for ;JIm _ 1 and h is strictly condi
tionally positive definite. For more details see [7]. Thus, in this case, the
interpolant s(x) is well defined.

We remind the reader that X is said to be a determining set for &m _ 1 if
p is in .o/'m _ 1 and p vanishes on X implies that p is identically zero.

If h is the function defined by the formula

h(x) = -)1 + Ix1 2
,

where Ixi is the Euclidean norm of x, then m = 1 and the corresponding
method of interpolation defined by (1), (2), (3), and (4) is often referred to
as the multiquadric method. This and closely related methods are currently
quite fashionable, see [4, 10].

In an earlier paper [8] we obtained bounds on the pointwise difference
between a function f and the h spline which agrees with f on a subset X of
Rn

• These estimates involve a parameter d that measures the spacing of the
points in X and are O(d l

) as d ---+ 0 where I depends on h. The results. of the
present paper imply that for certain h's, which include (4), the estimates
can be improved to O(Jel/d) as d ---+ 0, where Je is a constant which satisfies
0< A< 1. The conditions on f are the same as those in [8].

1.1. A Bound for Multivariate Polynomials

A key ingredient in the development of our estimates is the following
lemma which gives a bound on the size of a polynomial on a cube in R"
in terms of its values on a discrete subset which is scattered in a sufficiently
uniform manner. This result may be of independent interest.

LEMMA 1. For n = 1, 2, ... , define "Y n by the formulas "Y 1 = 2 and, if n > 1,
"Y n = 2n( 1+ "Y n _ 1)' Let Q be a cube in R n that is subdivided into qn identical
subcubes. Let Y be a set of qn points obtained by selecting a point from each
of those subcubes. If q ~"Yn(k + 1), then for all p in ~

sup Ip(x)1 :(;e2nYn(k+1) sup Ip(y)l.
XEQ YEY
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We remark that it is not essential for the set Y to intersect every subcube
of Q as hypothesized above. A variant of this lemma where Y intersects a
certain percentage of these subcubes can be found in Subsection 3.3.

Note that it follows from Lemma 1 that Y is a determining set of ,q. The
estimate in the lemma is roughly equivalent to a bound on the Lebesque
constant for Lagrange interpolation. In the cases where Y is regularly
distributed in Q this bound can be derived by more traditional methods;
see [1,2].

1.2. A Variational Framework for Interpolation

The precise statement of our estimates concerning h splines requires a
certain amount of technical notation and terminology which is identical to
that used in [8]. For the convenience of the reader we recall several basic
notions.

The space of complex valued functions on R n that are compactly sup
ported and infinitely differentiable is denoted by £2. The Fourier transform
of a function rjJ in £2 is

~(O =f e-i<x,o rjJ(x) dx.

A continuous function h is conditionally positive definite of order m if

fh(x)rjJ * (f(x) dx ~ 0 (5)

holds whenever rjJ = p(D)ljJ with ljJ in £2 and p(D) a linear homogeneous
constant coefficient differential operator of order m. Here (f(x) = rjJ( -x)
and * denotes the convolution product

Note that (5) can be rewritten as

If h(x- y) rjJ(x) rjJ(y) dx dy ~O.

In what follows h will always denote a continuous conditionally positive
definite function of order m. The Fourier transform of such distributions
uniquely determines a positive Borel measure 11 on Rn

~ {O} and constants
ay , Iyl = 2m as follows: For all ljJ E £2
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fh(X)t/J(X)dx=f{~(~)-X(O I DY~(O)~~}dfl(~)
Iyl <2m y.

+ I DY~(O) a;,
jyl ";2m y.

where for every choice of complex numbers c~, loc! = m,

I I a~+f3c,"cf3 ~ O.
1,"I~m lf3j~m

97

(6)

(7)

Here Xis a function in ~ such that 1 - X(0 has a zero of order 2m + 1 at
~ = 0; both of the integrals So < I~I < 1 I~12m dfl(0, SI~I;3 1 dfl(0 are finite. The
choice of X affects the value of the coefficients ay for Iyl < 2m.

Our variational framework for interpolation is supplied by a space we
denote by ~h,m' If

then ~h,m is the class of those continuous functions I which satisfy

If I(x) ~(x) dx I:::; c(f) {f h(x- Y) ~(x) ~(Y) dx dyf/2 (8)

for some constant c(f) and all ~ in ~m' If I E ~h,m let IIIII h denote the
smallest constant c(f) for which (8) is true. Recall that 1I/IIh is a semi
norm and ~h,m is a semi-Hilbert space; in the case m = 0 it is a norm and
a Hilbert space respectively. Elements I in ~h,m are of the form

where the Fourier transform of11 is given by

with g in L 2(dfl) and 12 is a polynomial of degree m.
Given a function I in ~h,m and a subset X of Rn there is an element s of

minimal ~h,m norm which is equal to I on X. If X is a determining set
£J>m _ 1 then s is unique. We refer to such s as the h spline interpolant of I
on X. In the case when X is a finite subset of Rn as considered in beginning
of this introduction the h spline s is given by (1), where I(xi) = Ii'
i = 1, ..., N, See [7J for more details.
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1.3. Exponential Error Estimates

Our basic theorem concerns how well s approximates f in regions Q
where X provides sufficient coverage. In other words, we are interested in
bounds on the quantity

If(x)-s(x)1

Ilfllh
(9)

where x is in Q; the estimates should be in terms of parameters which
measure how closely X covers Q. For example, the parameter d = d(Q, X)
defined by

d(Q, X) = sup inf Iy- xl
YEa XEX

is one such measure.
In [8] we showed that in many cases the quantity in (9) is O(d k

) as
d --+ 0, where k is a constant whose maximum value is determined by h. In
this paper we restrict our attention to h's whose corresponding measures J1
defined by (6) satisfy certain moment condition. For example, if h is given
by (4) then, as detailed in Subsection 2.2, there is a positive constant p such
that for all integers k greater than 2

(10)

In this case we are able to obtain the exponential estimate described in the
abstract.

In subsection 2.3 we consider a variant of (10) where k! is replaced
by k'k, r an arbitrary real constant. As might be expected, this leads to
somewhat different bounds on (9).

Because of the local nature of the result, we restrict our attention to the
case where Q is a cube.

THEOREM 1. Suppose h is conditionally positive definite of order m and
the corresponding measure J1 satisfies (10) for all k greater than 2m. Then,
given a positive number bo, there are positive constants 00 and A, 0 < A< 1,
which depend on bo and h for which the following is true: Iff E ~h m and s is
the h spline that interpolates f on a subset X of Rn then '

holds for all x in a cube E provided that (i) E has side band b): bo,
(ii) 0 < 0::;;; 00 , and (iii) every subcube of E of side 0 contains a point of X.
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Observe that every cube of side c:5 contains a ball of radius c:5/2. Thus the
subcube condition is satisfied when c:5 = 2d(E, X). More generally, we can
easily conclude the following:

COROLLARY 1. Suppose h satisfies the hypotheses of the theorem, Q is a
set which can be expressed as the union of rotations and translations of a
fixed cube of side bo, and X is a subset of Rn

. Then there are positive
constants do and ),,0 <,{ < 1, which depend on bo and hfor which the following
is true: If d :::::; do, f E C(}h,m and s is the h spline that interpolates f on X then

holds for all x in Q where d = d(Q, X).

Note that any ball in Rn satisfies the hypothesis on Q in the above
corollary. Indeed, any set Q with sufficiently smooth boundary satisfies this
hypothesis.

2. DETAILS FOR THEOREM 1, EXAMPLES, AND GENERALIZATIONS

As alluded to in the introduction, Lemma 1 is an important ingredient in
the proof of this theorem. The following lemma, which is a transparent
consequence of Lemma 1 and routine arguments involving linear func
tionals, is in convenient form for applying this ingredient.

LEMMA 2. Let Q, Y, and "In be as in Lemma 1. Then, given a point x in
Q, there is a measure a supported on Y such that

f p(y) da(y) = p(x)

for all p in .C!Jk , and

2.1. Proof of Theorem 1

First, let P, "In' and bo be the constants appearing in Inequality (10),
Lemma 1, and Theorem 1, respectively. Let

and
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where m is the order of conditional positive definiteness of h. We will show
that bo as defined above can be used for the constant in the statement of
Theorem 1.

For now, let x be any point of the cube E and recall that Theorem 4.2
of [8] implies that

whenever k > m, where (J is any measure supported on X such that

fp(y)d(J(Y)=p(x)

for all polynomials P in ~-1' Here

whenever k > m and by virtue of (9)

Ck:( (2p )k.

(11 )

(12)

(13)

To obtain the desired bound on If(x) - s(x)1 it suffices to find a suitable
bound for

This is done by choosing the measure (J appropriately. We proceed as
follows:

Let b be a parameter as in the statement of the theorem. Since b :( bo we
may chose an integer k so that

(14)

Note that such a k is ;:?;m + 1 and Ynkb:( boo Let Q be any cube which
contains x, has side Ynkb, and is contained in E. Subdivide Q into (Ynkt
congruent subcubes of side b. Since each of these subcubes must contain
a point of X, select a point of X from each such subcube and call the
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resulting discrete set Y. By virtue of Lemma 1 we may conclude that there
is a measure (J supported on Y which satisfies (12) and enjoys the estimate

(15)

We use this measure in (11) to obtain an estimate on f.
Using (13), (15), and the fact that support of (J is contained in Q whose

diameter is .fi YnkJ we may write

Since

(16)

Inequality (16) implies that

and
1

k>3C bYn

Hence we may conclude that

If(x)-s(x)1 ~AY'llfll,,,

where

2.2. Examples

A well known class of examples of conditionally positive definite h's is
given by

h(x)
r(a/2)

where a is a fixed real number #- 0, - 2, - 4, '" and r is the classical
gamma function. The corresponding measure tl is given by

dtl( 0 = Ca 1(I (a -n)/2K(n _ a)/2( 1(I),

where Ca is a positive constant and K v is a modified Bessel function of the
second kind; see [8] for more details and the cases a = 0, - 2, - 4, ....
Because of the exponential decay of Kv(t) as t -7 CfJ the moments of tl grow
like pkk! and hence tl satisfies (9) whenever k is sufficiently large.
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The important example of the Gaussian

h(x) = e- 1xj2

has corresponding measure

df1(e) = (2ny/2 e-I~12/4 d~,

of course. The moments of f1 grow like pkJk!. Although Theorem 1
provides a bound on the error, in this case one expects better estimates·
because the growth of these moments is significantly slower than
hypothesized.

More generally, consider the case when the measure f1 is given by

where a is a positive constant. Here, of course,

The moments of f1 grow like pkkrk where r = lla. The case a = 2 is essen
tially the Gaussian which together with the rest of the cases a): 1 is
covered by Theorem 1. On the other hand if 0 < a < 1 the bound on the
rate of growth of the moments hypothesized in the statement of Theorem 1
fails to hold.

The theorems in Subsection 2.3 provide answers to the questions raised
above.

2.3. Generalizations

As mentioned in the introduction, different bounds on the rate of growth
of the moments of the measure f1 result in different estimates on the
difference between f and its h spline interpolant s off the interpolated set.
Here we consider the case

(17)

for k> 2m, where r is a real constant and p is a positive constant.
Note that in view of Stirling's formula there are positive constants PI and

P2 such that

(18)

Thus the case r = 1 was treated in Theorem 1. Also observe that Theorem 1
provides an estimate in the case r> 1. However it is possible to get a more
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sensitive estimate in this case without much more work; this is shown in
Theorem 3 and its proof. We first consider the case r ~ 1.

THEOREM 2. Suppose h is conditionally positive definite of order m and
the corresponding measure J1 satisfies (17) with r ~ 1 for all k greater than
2m. Then, given a positive number bo, there are positive constants 15 0 and I"~

0<), < 1, which depend on h, r, and bo and for which the following is true:
If f E '?5h ,m and s is the h spline that interpolates f on a subset X of R n then

holds for all x in a cube E provided that (i) E has side band b ~ bo'
(ii) 0 < b ~ 0o, and (iii) every subcube of E of side 0 contains a point of X.

Proof In view of (17) and (18) there is a constant Po such that

Let Ynand bo be the constants appearing in the statements of Lemma 1 and
Theorem 2 respectively. Let

and

and let

where m is the order of conditional positive definiteness of h. Let 15 be a
parameter as in the statement of the theorem. Since b ~ bo, 3(CYnb)1/r is
less than 1 and we may choose an integer k such that

Note that such a k is ~m + 1 and Ynkb ~ boo
Proceeding as in the proof of Theorem 1 we get

If(x)-s(x)1 ~Illfllh'

where

640/70/1·8

(19)
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we may conclude that

and

I ~ ((2/3 )1/(3(cyn)1/r»)b-
1
/
r
•

In view of (19) the theorem now follows with

A= (2/3 )1/(3(CYn)1/r). I

THEOREM 3. Suppose h is conditionally positive definite of order m and
the corresponding measure f1 satisfies (17) with r < 1 for all k greater than
2m. Then, given a positive number bo, there are positive constants 15 0 , c, and
C, which depend on h, r, and bo and for which the following is true: If f E ({jh

and s is the h spline that interpolates f on a subset X of R n then

holds for all x in a cube E provided that (i) E has side band b ~ bo,
(ii) 0 < 15 ~ 15 0 , and (iii) every subcube of E of side 15 contains a point of X.

Proof Let

where Yn is the constant defined in Lemma 1, and

B =2po~ e2nYn

with Po as in the proof of Theorem 2. Then if 15 ~ 15 0 there is an integer k
such that

Arguing as in the proof of Theorem 2 we can conclude that

If(x) - s(x)1 ~ Illfllh' (20)
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The last inequality together with (20) implies the desired result with

105

and

3. DETAILS FOR LEMMA 1

We begin by asserting that it suffices to prove

sup Ip(x)1 ~ e2qn sup Ip(y)l·
XEQ yE Y

(21 )

If q = Yn(k + 1) this inequality is identical to that in Lemma 1. To see why
(21) is sufficient, define q' by q' = Yn(k + 1) and let Q' c Q be a cube that
contains exactly (q't of the qn subcubes of Q. By (21) we have

sup Ipl ~ e2q
'n sup Ipl·

Q' Q'n Y
(22)

The inequality in Lemma 1 now follows because sUPQ' n Y Ipi ~ sup Y Ipi
and every point in Q lies in at least one such Q'. Our proof will actually
establish

(
(2q)k)n

sup Ip(x)1 ~ T sup Ip(y)l·
XEQ • YEY

(23 )

This gives (21) because (2q)k/k! ~ e2Q
•

To simplify notation we assume Q= [0, 1y. To see that this involves no
loss of generality, let Q be any cube in R n and let t/J be an affine transforma
tion mapping [0, 1]n onto Q. Then polynomials p on Q are related to poly
nomials f on [0, 1] n via the correspondence

f(x) = p(t/J(x))

and the corresponding subdivisions and discrete subsets Yare related
analogously. It is clear that an estimate like that given by Lemma 1 on the
size of f on [0, 1Y implies the corresponding estimate on the size of p on
Q.

Our proof of Lemma 1 involves induction on the dimension n. While
Lemma 1 and its proof are elementary and well known in the casen = 1,
in the first subsection we formulate it in a manner convenient for the
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(25)

necessary induction argument. The general case involves certain unpleasant
combinatoric and geometric complications, so for the sake of clarity, we
spell out the argument in the case n = 2 in the second subsection. The
general case is considered in the third subsection.

3.1. The Case n = 1

PROPOSITION 1. Let T= {to, ..., td be a subset of the unit interval [0,1]
and assume t;_l + l/q:( t;, for i = 1, ..., k. Then for all p E &L

(2qt
sup Ip(t)1 :(k\sup Ip(t)[.

IE[O,l] . lET

Proof Recall p = LJ~o p(t;) L;, where

The assumption l/q:( t; - t;_l implies It; - tjl-1 :( q/li - jl. Also, It - tjl :( 1
for all tE [0,1]. Hence, for such t, [L;(t)1 :(qk/[i!(k-i)!] and

which gives the desired inequality. I

3.2. The Case n = 2

PROPOSITION 2. Suppose the square Q = [0, 1] 2 is divided into q2 identi
cal subsquares and X is a set that intersects each subsquare. If q ~ 12(k + 1),
then for all p E &t

(
(2q )k)2

~~~.Ip(x)[:( k! ~~~ Ip(x)[. (24)

Proof Instead of (24) we show that if hE&t and [h(x)[ < 1 for all XEX
then

(
(2q )k)2

s~p [hl:( k! .

That this implies (24) can be seen by considering h=p/(e+supxlpl),
e>O.

Let Q;, i E I denote the q2 subsquares of Q and set m; = min aQi [hi, where
8Q; denotes the boundary of Q;. Let No be the number of points in
10 = {i E I: m; < 1}. We assert that

(26)
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To see this, take b = (bI> b2), let gb(X) = Ih(xW + (b 1x[ + b2x2), and note
that for every i E 1\10'

min go < 1 :::;; (my = min go.
Q, 3Q,

Thus we can choose 8> 0 such that if Ibl < 8 then for every i E 1\10

When this occurs, gb has a critical point in the interior of Qi' Such a b can
be chosen such that all the critical points of gb are nondegenerate; for
example see Lemma 6.2 on p.40 of [9]. Now gb E ~b so by virtue of
Proposition 4 in Subsection 3.4 it can have at most (2k - 1? non
degenerate critical points. Thus 1\10 has at most (2k - 1)2 points and (26)
follows.

For each iEIo select a point YiE8Qi such that Ih(Yi)1 < 1 and that Yi is
not one of the four corners of Qi' Partition 10 into four subsets 1[, ...,14

according to whether Yi lies on the top, bottom, left, or right edge of Qi'
Let N 1 be the number of points in I] and assume without loss of generality
that N 1 ;;::: Noj4.

For each j = 1, ... , q let I(j) be the set of i's for which Qi lies in the
horizontal strip

{(t, s): O:::;;t:::;; 1, (j-1):::;;qs:::;;j}.

Let N(j) be the number of points in II n I(j) and let N be the number of
points in J = {j: N(j);;::: 2(k + 1)}.

Noting N 1 = LJ~1 N(j):::;;Nq+ (q-N)(2k+ 1)=q(2k+ 1) +(q-2k-l )N,
we observe that N:::;; k would imply

N 1 :::;;q(3k+ 1)-k(2k+ 1).

Since this gives No:::;;4N1 :::;;q(12k+4)-(8k2 +4k) which violates (26), we
conclude that N;;::: k + 1.

Let pit) = h(t, jjq). In N(j) of the intervals

r-1 r
--:::;;t:::;;-,

q q
r= 1, ..., q

there is a point t with IPi (t) I< 1. If j E J there are at least 2(k + 1) such
intervals. Thus we can apply Proposition 1 to Pi and see that

max I (t)1 :< (2q)k
IE [0,1] P; "" k!

(27)
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for every j E J. Using this and the fact that J has N?3 k + 1 points we can
apply Proposition 1 again, this time to p(s) = h(a, s), a E [0, 1] to arrive at
(25). I

3.3. The General Case

PROPOSITION 3. Define Yn for n=1,2, ... by YI=2, Yn=2n(1+Yn_I)'
n> 1. Let r E (0, 1] and let k and q be positive integers with q?3 Yn(k + 1)/r.
Subdivide the unit n-cube [0, 1r into qn identical subcubes and let N be the
number of such subcubes that intersect a subset X of R n. If N?3 rqn then for
all f E &Pk

(
(2q)k)n

sup If(x)1 ~ k! sup If(x)l·
x E [0,1]" . X EX

(28)

Proof We first deal with the case n = 1. In that case the subcubes are
the intervals Ii = [(i - 1)lq, i/q], i = 1, ..., q. Let i(1) < i(2) < ... < i(N) give
the intervals that intersect X. For each j = 1, ... , N choose x(j) E Ii(j) n X. By
assumption, N?3 rq?3 2(k + 1). The points

to=x(1), t l =x(3), ... , tk =x(1 +2k)

satisfy tj - tj _ 1 ?3 1/q so (28) follows from Proposition 1.
To complete the proof we use induction on n. The integers k and q will

be held fixed during the induction. Let n' = n - 1 and define r' by
Yn)r' = Yn/r. Then q?3 Yn' (k + 1)lr'. Subdivide the unit n'-cube [0, 1Y into
qn' identical subcubes and let N' be the number of such subcubes that inter
sect X' eRn'. If N'?3 r'qn' then, by induction, for all g E &t

(
(2q )k)n'

sup, Igi ~ -k
'

sup Igi.
[0,1]" . X'

(29)

Instead of (28) we will show that if hE &Pk and Ih(x)1 < 1 for all x EX then

(
(2q )k)n

sup Ihl~ -k
'

.
[0,1]" .

(30)

That this implies (28) can be seen by considering h = p/(s + supx IpI), s > 0.
Let fl denote the family of qn subcubes of [0, 1r. For each Q E fl let

mQ = minaQ Ihl where oQ denotes the boundary of Q. Let

flx = {Q Efl: Qn X =l0}.

Note that N is the number of elements in fl and let N h be the number of
elements in flh • We assert that

(31 )
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To see this, for bERn consider the functions gb defined by

min go< 1~min go.
Q oQ

Thus we can choose e >°so that for all Q E !!2xV!2h and all Ibl < e

109

When this holds, it is evident that g b has a critical point in the interior
Q. Thus gb has at least N - N h critical points. Such a b can be chosen such
that the critical points of gbare nondegenerate, see Lemma 6.2 on page 40
of [9]. Since g b E ~k> by virtue of Proposition 4 in Subsection 3.4 it can
have at most (2k - 1t nondegenerate critical points. Thus N - N h :(

(2k-lt which gives (31).
For each QE!!2h a point y(Q)EOQ can be selected so that Ih(y(Q))1 < 1.

By moving y(Q) slightly, if necessary, it may also be assumed that y(Q) lies
on exactly one of the hyperplanes

m = 1, ..., n, j = 0, ... , q.

Let Nh(m, j) be the number of Q's for which y(Q) E M m,j' Let
Nh,m =LJ~o Nh(m, j), and note that N h= I::n~ 1 Nh,m' Without loss of
generality we assume Nh,n ~ Nh/n.

Let Y= {y(Q): Q E !!2h}, Yj = Yn Mn,j' In each hyperplane Mn,j there
are qn ~ 1 (n - 1)-cubes that correspond to the subdivision of [0, 1r into qn
n-cubes. Let N( Yj) be the number of (n -1 )-cubes in M n,j that intersect Yj .
Then N( ¥j) ~ Nh(n, j)/2 because for each (n - 1)-cube Q' in Mn,j there are
at most two n-cubes Q E!!2 which contain Q'. Thus we have

If N(¥)~r'qn-l then from (29) we get

(
(2 )k)n-l ((2 )k)n-l

Ih(x', j/q)1 :( :1 s~JP Ihl < :!

(32)

(33)

for all x' E[0, 1r- 1
• Let J = U: N( ¥j) ~ r'qn~ I}. We will show below that
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J has at least k + 1 elements. This allows us to apply Proposition 1 to
p(t) = h(x', t). The result is

(2q)k
Ih(x', t)1 ~-kl max Ih(x', j/q) I

• jEJ

for every t E [0, 1]. Because of (33), this gives (30).
Let s be the number of elements in J. It remains to show s;:' k + 1. For

all j, N( Yj ) ~ qn-1 and for j ¢ J, N( Y) < r'qn-1. Thus

q

L: N( Yj ) ~ sqn - 1 + (1 + q - s) r'qn - 1.

j=O

Combining this with (32), (31), and the hypothesis N;:, rqn gives

or, after division by qn - 1,

rq (2ktq (1 )' ( ')----- +q r ~s 1-r .
2n qn2n

(34)

By definition of r', r=r'Yn/Yn_1 with Yn=2n(1 +Yn-d. Hence
r/2n = r'(1 + Yn- d/Yn-1 or r/2n - r' = r'IYn-1' Thus (34) can be rewritten as

r'q (2ktq )--- -2-+r' ~s(l-r').
Yn-1 q 2n

By assumption we have q;:, Yn(k + l)/r = Yn-1(k + l)/r'. Taking
M=Yn_dr' in the following lemma, we find (1-r')(k+1)~s(1-r')

which gives s;:' k + 1. I

LEMMA 3. If n;:' 2, k;:, 1, r' E (0, 1], Mr';:' 2, and q;:, M(k + 1) then

(35)

Proof From k~k+ 1~q/M we have k/q~ l/M~ 1/2 and

(
2k)n M(k+ 1),,:::: (3-)2 M(k+ 1) ,,::::k+ 1 ,,::::2k "::::kr'
q 2n '" M 2n '" M "" M"" .
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Multiplying this by -1 and then adding 1+ k gives

(
1 (2k)n 1 )1+k-kr' ~ M- q 2n M(k+ 1).

Hence

l+k-kr'~(~-c:rL)q
which is the same as (35). I
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3.4. Critical points of polynomials

PROPOSITION 4. If P is a real valued polynomial on R n of degree d then
p can have at most (d - 1t nondegenerate critical points.

Proof A simple argument for the case n = 2 goes as follows: Let q be
the greatest common factor of opjox 1 and OpjOX2' and write opjOXi=qPh
i = 1, 2. If q vanishes at X o then

Hence X o is a degenerate critical point. At any nondegenerate critical point
Xo we therefore have PI(XO) = 0 = P2(XO)' Since PI and P2 have no common
factor, the two-variable version of Bezout's theorem, for example see [12J,
implies that the number of such points X o does not exceed
N=(degpI)(degP2)~(d-1f. The lack of such a convenient form of
Bezout's theorem when n> 2 is what makes the general case more difficult.

To obtain a proof in the general case we begin by observing that it is a
corollary of its complex analogue. Indeed, there is a unique P E,9AC) such
that p(x)=P(X+10) for all xERn

• Here and in what follows l=~.
From

Op oP
- (x)=- (X+10)
OXk OZk

and the corresponding formula for second order partial derivatives, it is
clear that if X o is a nondegenerate critical point of p then Zo = X o+ to is a
nondegenerate critical point of P. Thus the general case follows from the
next proposition. I

PROPOSITION 5. If P E !?Jld( Cn
) then p can have at most (d - 1r non

degenerate critical points.
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Proof For j=l, ...,n let Pj=op/OZj' All critical points of pare
degenerate if Pj = 0, so we assume Pi i=°for all j. Let m = dim PA en); we
identify points c E em .

c = (cJ1<x1 ,,<d= (a<x + lb<X)I<X1 ,,<d = a + lb

with points (a, b) E R2m. For Zo E e, ZE en and c E em let

(36)

Let cp be the point in em such that p(z) = f(l, z, cp ) for all ZE en. Note
that Pj(z) = f/(1, z, cp ) where f/ = of/ozj, j = 1, ..., n.

Let z(l), ..., zeN) be nondegenerate critical points of p. Put
~(r) = (1, z(r)), r = 1, ..., N and observe that Z = A~(r), AE e is a solution of
the system f/ (z, cp)=O, j= 1, ..., n. By Bezout's Theorem [11], if n
homogeneous equations f/(z) =°in n + 1 variables z = (zo, z) have only a
finite number of solution rays Z=A~(r), r=l, ...,q, ~(r)Een+1\{0}, then
q ~ (d - 1y, where d - 1 is the degree of f/, j = 1, ..., n. The desired conclu
sion, N ~ (d - 1y, would follow if we knew that the system f/(z, cp ) = 0,
j = 1, ..., n had only a finite number of solution rays. The latter may not be
true, but it suffices to show that we can perturb cp to obtain a point c E em
for which the number, qn of solution rays of the system f/(z, c)=O,
j = 1, ..., n is finite and satisfies qc ~ N.

First we show that qc ~ N is automatic if c is close enough to cpo
Consider the map T from en x em to en given by

T(z, c) = (f1(1, z, c), ..., fn(l, z, c)).

The points z(i) are nondegenerate, so the n x n matrix oT/oz is nonsingular
at (z(i), cp ), i = 1, ..., N. By the Implicit Function Theorem there are
analytic functions C on a neighborhood Be em of cp such that

i= 1, ..., N.

By making B smaller, if necessary, it may be assumed that C(c) i= (j(c) for
all c E B and all i i= j. It is then evident that qc ~ N for all C E B.

To complete the proof we establish that for almost every point
(a, b) E R2m, the system f/(z, a + lb) = 0, j = 1, ..., n has only a finite number
of solution rays. For k = 0, ..., n define maps Jk from R 2n to
{ZE en+ 1; Zk= 1} by

Let V(k,a,b)=n;~l {xER 2n;f/(Jk(x),a+lb)=0}. The maps Jk provide
coordinate systems for complex projective n space. By compactness of that
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space, it suffices to prove that V(k, a, b) consists of isolated points for every
k = 0, ..., n and almost all (a, b) E R 2n

•

The proof of this uses a theorem from [9]. To prepare, define Jjjz),
I(XI ~dby

and identify Jj.~ with an n x m matrix.
We assert that Jj.~(Jk(X)) has rank n for every k=O, ..., n and every

x E R 2n
• For k i= 0 we take

(X = (X(i, k) = e(i) + (d - 1) e(k), i= 1, ... , n,

where {e(1), ...,e(n)} is the standard basis for R n
, and consider the nxn

matrix Fj,i(X, k) = Jj,~(i,k)(Jk(X)). Then Fk,k(X, k) = d, Fj,j(x, k) = 1 for j i= k,
and Fj,Jx, k) = 0 for j i= i, i i= k. It follows that det(Fj,Jx, k)) = d, k i= 0, the
off diagonal entries of the kth column of F are not needed for this. For
k=O, the nxn matrix Fj,i(X, 0) = Jj,e(i)(J°(x)) is seen to be bi,j and our
assertion is verified.

To obtain notation more like [9] we fix k E {O, ... , n} and define real
valued function U 1, ... , U2n by

Uj(x, a, b) + lUj+n(X, a, b) = Jj(Jk(x), a + Ib).

Using the analysis of Fj,i(X, k) above, we see that the 2n x 2(n + m) matrix
of partial derivatives of Ul' ... , U2n has rank 2n. By Theorem 7.1 on p. 50 of
[9] we conclude that for almost all (a,b)ER 2n

, the 2nx2n matrix
(aUjaxJ(x, a, b) is nonsingular at every point in

2n

V(k,a,b)= n {xER 2n
: Ui(x,a,b)=O}.

[=1

Thus for such (a, b) the points in V(k, a, b) are isolated. I

4. MISCELLANEOUS REMARKS

A detailed account of conditionally positive definite function and dis
tributions can be found in [6]. For a development of the variational theory
which does not involve Fourier transforms see [7]; this paper also
contains error estimates which are different from those considered here.

The analogues of Corollary 1 for Theorem 2 and 3 are clear. It is also
clear that the analogues of Lemma 1 and the Theorems hold when the
cubes are replaced by more general parallelepipeds; simply apply an
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appropriate affine transformation. Thus analogues of Corollary 1 hold
when Q satisfies an interior cone condition. Since our results seem to apply
to most reasonable situations we refrain from exploring further generaliza
tions.

If the measure f1 satisfies (17) with r":;;O then it must have compact
support. Also recall that in this case the constant C can be taken to be
independent of boo Since the exponent c is (1-r) bo/(2Yn), if 0 is such that
Co < 1, letting bo --+ 00 it is clear that If(x) - s(x)1 --+ O. In other words, for
sufficiently small 0 if the intersection of X with any cube of side 0 is not
empty then s(x) = f(x) on Rn

• This means, of course, that the values of f
on X uniquely determine f The implications of this to irregular sampling
theory, such as that found in [3J or [5J for example, will be explored
elsewhere.
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